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Abstract. The Furry, Jones and Onsager column theory is reformulated to determine the 
effect of the buoyancy-driven convection induced by the density composition dependence 
on the separation of a binary liquid mixture (the ‘forgotten effect’). The transport equation 
is obtained in terms of correction factors depending on the separation parameter and to be 
applied to the standard column coefficients. From this equation, the column transient 
operation is carefully analysed. It is found that, contrary to what happens at the steady state, 
the forgotten effect greatly affects the approach to equilibrium. The excellent agreement 
obtained between the theory developed and the experimental data opens up the possibility 
of determining accurate values of ordinary and thermal diffusion coefficients of liquid 
mixtures from column separation measurements. 

1. Introduction 

The thermal diffusion (TD) factor, a, is a kinetic quantity that has been widely used in 
the past to study the interaction between molecular species. TD factors are very sensitive 
even to minor changes in the interaction features. An expressive example is the gas 
phase separation of isobaric species of isotopically substituted methane molecules [ 11, 
where TD factor is mainly dominated by rotational effects. In addition, the well estab- 
lished Chapman-Enskog kinetic formulation had shown the way to relate the measured 
TD data to the intermolecular potential functions between species in gas phase math- 
ematically [2,3]. For this reason, work on TD properties of dilute gas mixtures was 
strongly directed towards the study of the microscopic features of the pairs interactions 
[4-61. Simultaneously, a notable improvement in the understanding of the experimental 
techniques was obtained [7,8]. 

However, a similar route was not generally practicable in the case of the liquid 
mixture, and most of the work in the field has been done in relation to more phenom- 
enological aspects or as simple improvements of a material-science separation tool [8,9]. 
Recently, advances in the experimental techniques and new directions of work have 
renewed interest in thermal diffusion as a powerful source of phenomenological infor- 
mation. Recently contributions on the diffusion properties of macromolecules [lo], TD- 
induced buoyancy-driven instabilities [ 111, diffusion properties in the vicinity of the 
critical points of liquid mixtures [ 12, 131, isotopic thermal diffusion in liquid mixture [ 141, 
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etc have been reported. In this connection, Bonner and Sundelof [15] have suggested 
that important mass fluxes can be generated in living matter by thermal gradients, 
in conditions of incipient phase separation, where the Fickian diffusion currents are 
suppressed. 

Some remarks about the ways of acquiring experimental data on diffusion coefficients 
are now pertinent. In the first place, the elementary non-convective TD unit provides 
the quantity D T / D ,  i .e. ,  the ratio of the thermal and Fickian diffusion coefficients. 
Moreover, the time evolution of the separation suffices to determine D.  Some recent 
improvements in the optical measurements of the separation in the elemental TD cell 
make this method an attractive way of determining both quantities [ll, 121. 

On the other hand, it is widely known that the Clusius-Dickel tube produces greater 
separations than the non-convective units, although its characteristic operation times 
are also correspondingly higher. An elementary theoretical description of the separation 
in the column predicts that the steady Rayleigh separation factor [16] is proportional to 
the pure TD coefficient [17], DT, and that the Fickian coefficient, D ,  completely deter- 
mines the time evolution of the Rayleigh factor [18, 191. So, the two Onsager phenom- 
enological coefficients can be extracted, in two independent ways, from the separation 
data measured. 

The above results hold for the ideal case, i.e., when the composition dependence of 
the mixture density is ignored. If this dependence is allowed for, the column operation 
deviates from the ideal behaviour (the ‘forgotten effect’). At steady-state, departures 
from the ideal are small and increase with the ratio DT/D. This result is now well 
established, both theoretically [20,21] and experimentally [22], at least for mixtures 
with not very high separation parameters [20]. However, the non-steady-state operation 
shows most apparent deviations from the ideal. Separation rates are higher than the 
ideal at the early stages of the process, but the final consequence of the forgotten effect 
is always to increase the time needed to achieve the steady-state condition. As we shall 
show, this time also increases with D T / D .  

Contrary to that which is stated above for the steady state operation, a theory giving 
the time evolution of the separation in the non-ideal case has not yet been achieved, and 
to do so for mixtures with positive separation parameters is the aim of the present paper. 
Furthermore, we shall present preliminary experimental work performed in order to 
check the theoretical predictions. 

The results here presented point out that density effects must be carefully allowed for 
so as to describe correctly the overall operation of thermogravitational units. Moreover, 
they also suggest that the use of this technique in the measurement of diffusion properties 
of liquid mixtures in states close to its critical lines would seem to be a very attractive 
route. As is well known, the high intrinsic sensitivity of &for the detection of even small 
changes in the molecular interaction fields caused by long-range-order contributions, is 
sufficiently amplified by the countercurrent convection mechanisms. In addition, a high 
extra enhancement of the column amplification factor is to be induced by the large 
forgotten contributions to be expected near the critical region. So it would seem plausible 
to expect very high separations in the critical region or, alternatively, to obtain notable 
improvements in the threshold of the experimental detection of small long-range effects, 
when experimental conditions are not too close to the critical ones. In any case, it seems 
necessary to put more experimental and theoretical effort into this field until reliable DT 

and D values can be confidently reckoned from separation data measured in the vicinity 
of the critical states. 
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2. The transport equation equilibrium 

We shall consider a binary liquid mixture in a closed thermogravitational column of 
length L ,  breadth b and annular gap width 2w. The column walls are placed at x = ? w 
and are kept at temperatures T I  and T2, with T I  > TZ. 

In order to determine the influence on separation of the extra buoyancy effects 
induced by the horizontal variation of fluid density with composition, the so-called 
forgotten effect, we shall follow the basic assumptions of the standard Furry, Jones 
and Onsager (FJO) column theory [23]. Furthermore, under the usual measurement 
conditions of thermal diffusion factors in a gravitational column, the cylindrical aspects 
of the apparatus can be ignored and the Boussinesq assumptions are applicable. 

We shall take the density in the buoyancy term of the hydrodynamic equation as a 
linear function of temperature, T, and the mass-fraction of the less dense component, c 

p = p [ l - p ( T -  T ) - y ( c - C ) ]  (1) 

where /3 and y are, respectively, the coefficients of thermal expansion and density 
variation with composition, and the barred quantities are to be taken at the reference 
state. 

Finally, we shall assume the product c (1 - c) to be constant along the column. As is 
shown in [24], the variation of this quantity does not affect the resulting separation factor 
between the column ends when the overall separations are small. 

In the FJO formulation referred to, the relevant quantity for calculating the separation 
is the transport of one component through a column cross section. For the lighter 
component, the transport, q ,  is defined as 

+W 

q =  b /  pvcdx 
--w 

where U is the velocity of the convective-flow field. A working equation for q can be 
derived by integrating the continuity equation with respect to x 

v ( ~ c / ~ z )  = D(d/dx){(d~/d~)  - [(uc(~ - C)/T] (dT/dx)} P a )  

where z is the vertical coordinate, D ,  the ordinary diffusion coefficient and (U the thermal 
diffusion factor. On operating, one obtains the well known equation FJO 

= Hc(1 - C) - K ~ , c  (3) 

where H a n d  K are the column transport coefficients given by 

with AT = TI - T,  and g(x), the flow function being defined as 

g(x) = - 1' U dx. 
-W 

The FJO formulation assumes that convective flow is induced by the horizontal 
thermal gradient. The additional contribution induced from the horizontal composition 
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gradient can be included in the theory by introducing equation (1) into the hydrodynamic 
equation 

r(d2u/dx2)  = dp/dz  + pg (5a) 

where q is the viscosity, g the gravitational acceleration and p the pressure. Dif- 
ferentiating this equation with respect to x and taking into account equations (1) and 
(2a), in terms of the non-dimensional variables: 

x* = x/w U* = (u/w2)(2r/pBgAT) (6) 

d 4 g * / d ~ * 4  = (1 + S) - Rg* (7) 

one obtains for the flow pattern the equation 

where g* is the non-dimensional g(x) function, and S and R are, respectively, the 
separation parameter and the Rayleigh number based on the vertical composition 
gradient 

S = ac(1 - c ) y / P T  R = py6gw4/yD.  (8) 
Here 6 stands for 8,c. In the following, the separation parameter is considered to be a 
known constant through the column operation and R ,  being proportional to d,c, will be 
used as the local measure of the separation. Both non-dimensional groups are the 
quantities relevant to the description of the separation process. 

Equation (7) must be solved to the boundary conditions 

g*( l )=g*(- l )=g ,*( l )=g; ( - l )=O (9) 
which express mass-flow cancellation through a column cross section and zero velocity 
at the walls. In the absence of density composition effects, y = 0 and, consequently, S = 
R = 0. In this situation, (7) and (9) agree with the FJO equations for the g* function. 

Inserting the solution of (7) and (9) in (4), the column-transport coefficients can 
be written in terms of forgotten correction factors to be applied to the standard FJO 
coefficients HO and KO: 

H = Hoh(R, S )  K = KOk(R, S )  (10) 
with 

b (2 w) ap 2&( A T )  b (2 w) ' p p2g2 (A T )  
KO =- (11) Ho = - 

6! rr 9! r 2 D  
and 

h = (1 + S)a , (R)  k = (1 + S)2a2(R)  (12) 
where 

1 cosh(2p) -  COS(^^) 
p sinh(2p) + sin(2p) 

2 sinh(2p) sin(2p) 5 cosh(2p) - cos(2p) 
a2 = TT 2 P  F2 + [sinh(2p) + sin(2p)I2 2p sinh(2p) + sin(2p) 

- _  ] p = (R/4)'I4. 
9! 

(14) 

The correction factors h and k reduce to unity for the ideal FJO case (S = R = 0 ) .  
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Simple approximate expressions for h and k can be derived by expanding the functions 
al and a2 in a Taylor series about R = 0. One obtains 

a1 = 1 - r + (I + i l l)r2 - (1 + A2)r3 + . . . 
= 1 - 2(1 + A1)r + 3(1 + i12)r2 + . . . 

with r = 2 R/63 and A I  = 19/(4.55 13) and A 2  = 2879/(11* 13.63 5). Neglecting the 
comparatively small terms in A l  and A*, the resulting series are, respectively, the expan- 
sions of (1 + r ) - l  and (1 + r ) -z .  Thus, from (12) we have for h and k the simple 
expressions 

h = (1 + S)/(1 + r )  k = (1 + S)2/(1 + r)*. (16) 
These approximations prove to be accurate to within more than 1% for r G f (i.e., 

R G 63/4). Thus, they can be used (see below), for 0 S S S t. 
At the early stages of the separation process one can expect large gradients of dZc, 

and consequently of R. But at times close to the standby state, a,c tends towards to a 
constant value in all parts of the tube. In this way R loses its local character and can be 
used as an appropriate measure of the steady-state separation (for transient states see 
(28) below). By expressing the fact that q cancels out at the final equilibrium state, we 
get from (3), 10) and (12), a transcendental equation giving the stationary Rayleigh 
number, R,, as a function of S 

R ,  = (63S/2)(hm/k,) (17) 
where h, = h(R,) and k,  = k(R,). In the ideal case, h, = k, = 1, and (17) yields 
R,/S = 63/2. Note that, although R, and S are both zero in this case, the quotient R,/S 
remains finite. 

Insertion of the approximations (16) into (17) leads to the same result as above for 
R,/S. Further, by retaining the linear term in Alr in the expansion of a2 in (15), we obtain 
from (17) the approximation for R, 

R, = (63S/2)(1 + 2A1S). 

1, = 5 0 4 L / [ g ~ ( 2 w ) 4 ] ( a y D / p B ) ( l  + 2A1S) 

(18) 

(19) 

Taking into account the expressions defining R and S ,  (18) reads 

where 1, is the natural logarithm of the steady Rayleigh separation factor. Equation (19) 
coincides with the expression previously reported in the literature [ 18, 191. Numerical 
calculations from (17) show that the approximation (18) enables one to obtain R, values 
within an accuracy of better than about 1% for 0 S S G 2. All this indicates that the 
influence of density effects in the steady state is small, even for S values of higher than 
those found in standard TD practice. 

3. The approach to equilibrium 

The partial differential equation (PDE) that gives the time evolution of the separation 
process is derived from a mass balance applied to cross-sectional overall transport. 
Following FJO, we have 

pa,c = -a,q (20) 
where t is the time and p is the mass of fluid per unit length of column. Taking into 
account (3) and (lo), and introducing the non-dimensional variables 
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f = z / L  z = (Ko/pL2)t 

equation (20) reads 

dc/dz = D*(d2c/df2) (21) 

where 

D* = k ( l  + 2S)/(1 + S) + R dk/dR. (22) 

Boundary conditions for the problem merely state the q cancellation at both closed- 
column ends. Thus, in terms of R ,  we have 

R = R ,  at c = O  and [ =  1. (23) 

Finally, the uniform state of non-segregation furnishes the initial condition 

c = CO at t = 0. (24) 

It is convenient to rewrite the differential problem in terms of the new function w 
defined through 

R = R,(1 - w). (25) 

Differentiating (21) with respect to f and accounting for the proportionality between 
R and dcc, one obtains 

d w / d z  = (d/df)D*(dw/df) (26) 

and the conditions (23) and (24) read 

w = o  at [ = O  and f = 1  

w = l  at t = 0. 

The function w is related to the natural logarithm of the measured non-steady-state 
Rayleigh separation factor, l ( z ) ,  through 

1 

l ( z )  = Z,(1 - a )  52 =lo w d f .  

The differential problem, (26)-(27), is formally analogous to a standard desorption 
problem [25], D* being the effective diffusion coefficient. Some qualitative information 
about the time evolution of the desorption process can be gained from the examination 
of the S S 1/2 case. Using (16) and (22), the coefficient D* becomes 

D* = (1 + S)[1 + S(l  + w)]/[l + S(l - w)]'. (29) 

In the ideal case ( S  = R = 0), D* = 1. In the real case, w = 1 at short times and, 
according to (29), D* = (1 + S) (1 + 2S), i.e. D* > 1. Then the time rate of the desorp- 
tion process is higher than in the ideal case. On the other hand, D* = (1 + S)-' for long 
times, and thus the desorption rate is lower than in the ideal case. The separation process 
behaves in the same way: the separation rate for S # 0 is higher than in the ideal case at 
the initial stages of the process, but there is a slowing down at times close to the final 
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Figure 1. Dependence of Q, equation (28), against the non-dimensional time z for S = 0 
(---) and S = 1.3 (-); 0 experimental results for the carbon tetrachloride-nhexane 
mixture at 28% molar fraction of carbon tetrachloride. 

equilibrium state. (Figure 1 displays the numerical results obtained for i2 against t for 
s = 0 and S = 1.3, that show the differences between ideal and actual behaviour.) 

At the final stages of the separation process, D* = D2 (where D: is D* at w = 0). 
But the time evolution with a constant D* coefficient corresponds to an exponential 
decay with a characteristic relaxation time 

t, = 1/n2 D: . (30) 
For small values of S ,  in dimensional variables, one obtains from (29) the simple 

result 

ti- = (tr>0(1 + s) 

( t r ) o  = P L 2 / n 2 K ,  

(31) 

where 

is the characteristic time of the ideal process, when the forgotten contribution is absent. 
The approximation (31) gives a first indication of the strong influence of the density 
effects on the non-equilibrium states. In this respect, as (t,)o is proportional to D ,  the 
use of the ideal formulation eventually to determine ordinary diffusion coefficients from 
transient separation data, produces high errors even for mixtures with small values of 
S .  Numerical calculation confirms this fact. Moreover, it can also be concluded that the 
use of numerical solutions of the PDE problem is necessary: some approximate solutions 
of the desorption problem in the literature [25]  show strong deviations from the numeri- 
cal ones and thus they cannot be confidently used to describe the entire time-evolution 
process. 

In order to check the validity of the theory developed, we shall in the next section 
advance some preliminary non-steady-state experimental results. 

4. Experimental results and conclusions 

The liquid thermal-diffusion column used in this work is a conventional stainless-steel 
concentric-tube type closed at both ends, which has been described in detail in earlier 
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Figure 2. A schematic drawing of the liquid ther- 
mal diffusion column. A,  working space; E ,  c, 
connections to circulating cooling water; D, E,  
outlet and inlet hot water; F, G,  samplingports; H,  
J, filling and draining connections. 

publications [22]. The total length of the column is L = 0.9 m, and the distance between 
the sampling ports at either end is 0.791 m. The annular gap size is 0.95 mm. Figure 2 
represents a diagram of the column showing the working space. The temperature of the 
walls was kept constant using two circulating (15 1 min-’) thermostatically controlled 
baths. The temperature difference across the annulusisconsidered to be the temperature 
difference between the two water baths, corrected for the conductivity of the stainless- 
steel walls ( A T  = 4 K). The mean temperature under our experimental conditions is the 
arithmetic mean between the hot and cold temperatures, T = 311 K. Determination of 
mass concentration was carried out with a Zeiss refractometer. A Pulfrich-type refrac- 
tometer (with a nominal accuracy of 5 x was used in some experimental runs, 
when more precise determinations were required. The experimental procedure and the 
preparation and manipulation of the liquid mixture have been described elsewhere [22],, 

In the present work, the separation factor was measured as a function of time for a 
carbon tetrachloride-nhexane mixture (molar fraction of carbon tetrachloride = 
28.0%). This system was chosen because it presents a large separation parameter (S = 
1.3), mainly due to the large difference in the densities of the two components. 

Figure 1 displays the experimental results obtained for the quantity Q = 1 - l ( t ) / L  
as a function af the non-dimensional time t. The time scale factor required for real-time 
conversion was determined from the thermophysical properties of the mixture. The 
density and the density coefficients were calculated from experimental density data of 
the pure components [26], assuming an ideal mixture. The viscosity was measured by us 
in a Ubbelhode viscometer at the working temperature (q = 3.23 x P) and the 
ordinary diffusion coefficient was estimated from the data of Bidlak and Anderson [27] 
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at 298 K,  extrapolated to 311 K using the Wilke correlation [28]. The result obtained 
was D = 3.6 x 

Figure 1 also displays the theoretical solution for Q of (26)-(28) against the non- 
dimensional time, z, for S = 1.3. The thermal diffusion factor, needed to calculate S,  was 
extracted from the measured equilibrium separation data, according to the procedure in 
[22] (a = 3.1). As can be seen, the agreement between theory and experiment is highly 
satisfactory. Conversely, the experimental data, which have been used to reconstruct 
both ordinary and non-Fickian diffusion coefficients, reproduce the starting values to 
within an uncertainty of 1%. 

From the foregoing, we can conclude that the non-steady state-theory accounting for 
the forgotten effect and presented in this work correctly describes the transient behaviour 
of a liquid thermogravitational column. This conclusion opens up the possibility of 
determining ordinary diffusion coefficients and thermal diffusion factors from the sep- 
aration runs, even for moderately high values of the separation parameter. 

The situation for higher values of S merit some additional comments. In the first 
place, the present theory is a priori restricted to the case of low separations. This 
limitation prevents the use, in principle, of the solution of the PDE derived to interpret 
experiments with mixtures in states close to their critical lines, where one can expect 
high values of S and hence large separations. It seems clear that a more refined theory 
for high values of S must be developed. In any case, it can be concluded that the present 
work gives a good explanation of the current status in the field of standard TD practice. 
More effort, both theoretical and experimental in this field, would seem necessary. In 
this respect, we are now undertaking experiments with different mixtures, some of them 
close to the critical conditions. 

cm2 s-'. 
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